Silica cross-linked nanoparticles encapsulating fluorescent conjugated dyes for energy transfer-based white light emission and porphyrin sensing.
نویسندگان
چکیده
This work demonstrated that water-soluble fluorescent hybrid materials can be successfully synthesized by use of silica cross-linked micellar nanoparticles (SCMNPs) as scaffolds to encapsulate fluorescent conjugated dyes for pH sensing, porphyrin sensing and tunable colour emission. Three dyes were separately encapsulated inside SCMNPs (short to dye-SCMNPs). Each of the dye-SCMNPs indicated longer lifetime in water than that of free dye dissolved in organic solvent. The 7-(hexadecyloxy) coumarin-3-ethylformate (HCE) encapsulated inside SCMNPs (HCE-SCMNPs) exhibited fluorescence quenching by pH change in aqueous media. Furthermore, it was confirmed that the radiative and nonradiative energy transfer processes both occurred between HCE-SCMNPs and tetraphenyl-porphyrin (TPP), which were used to synthesize the water-soluble TPP sensor. Significantly, HCE-SCMNPs doped with 5,12-dicotyl-quinacridone (8CQA) and TPP showed water-soluble white light emission (CIE (0.29, 0.34)) upon singlet excitation of 376 nm due to colour adjustment of 8CQA and energy transfer from HCE (donor) to TPP (acceptor).
منابع مشابه
Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles
Near-infrared (NIR)-to-Visible upconversion fluorescent nanoparticles emit visible light upon NIR-light excitation, and are well suited for bioimaging, compared to the commonly used downconversionfluorescentmaterials.Thesenanoparticleshave advantages such as minimum photodamage to living organisms, weak background fluorescence, high detection sensitivity, and high light-penetration depth in tis...
متن کاملOptical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery.
This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface ...
متن کاملExcitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes
Excitation energy transfer from semi-conducting polymers to fluorescent dyes (or dye-labeled analytes) is commonly used in sensor applications, e.g., for DNA and protein sensing. Semi-conducting polymers show rather high absorption cross-sections and a high intra-chain mobility of the delocalized excitations leading to a high sensitivity for the excitation light. However, sensing of biological ...
متن کاملEnergy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes.
Fast and efficient energy transfer among dyes confined in nanocontainers provides the basis of outstanding functionalities in new-generation luminescent probes. This feature article provides an overview of recent research achievements on luminescent Pluronic-Silica NanoParticles (PluS NPs), a class of extremely monodisperse core-shell nanoparticles whose design can be easily tuned to match spec...
متن کاملSilica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution
In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 19 شماره
صفحات -
تاریخ انتشار 2012